Geometric construction of distinguished states

by Christoph Minz* (in joint work with Eli Hawkins and Kasia Rejzner)

General ideas

- symplectic manifold with Riemannian metric (\mathcal{M}, ω, g) (phase space of classical fields and momenta)
- classical C*-algebra \mathfrak{A}_0 and a dense Poisson subalgebra $\mathcal{A}_0 \subseteq \mathfrak{A}_0$ of functionals over the manifold

Geometric quantization

For each $\hbar \in I_* \subset \mathbb{R}_+ \setminus \{0\}$, a quantization bundle is a Hermitian line bundle $\mathcal{L}_{\hbar} \to \mathcal{M}$ with connection ∇_{\hbar} such that

$$\operatorname{curv}(\nabla_{\hbar}) = -\frac{1}{\hbar}\omega.$$

The Bochner Laplacian Δ_{\hbar} is an unbounded operator on sections $\Gamma(\mathcal{M}, \mathcal{L}_{\hbar})$ determined by the connection ∇_{\hbar} and metric g,

$$riangle_{\hbar} =
abla^*_{\hbar}
abla_{\hbar}.$$

In [1], it was shown that for $\kappa, \mu > 0$ (independent of \hbar) the (renormalized) Bochner Laplacian fulfills

$$\operatorname{spec}(\Delta_{\hbar,\Phi}) \subset [-\kappa,\kappa] \cup \left[\frac{2\mu}{\hbar} - \kappa,\infty\right]$$

Explicit construction in finite dimensions

- free scalar fields and momenta on a (subset of a) causal set [3, 4]
- determine a 2N-dimensional symplectic vector space (solution space) with inner product $(S, \omega, \langle \cdot, \cdot \rangle)$

Spectrum of the Bochner Laplacian

The symplectic form ω on S may be expressed by the inverse of the (restricted) Pauli-Jordan operator $E \in \text{End}(S)$ and the inner product,

$$\forall v_1, v_2 \in \mathcal{S} : \quad \omega(v_1, v_2) = \langle v_1, E^{-1}v_2 \rangle.$$

This relation determines some positive numbers ϑ_i such that the spectrum of the Bochner Laplacian Δ_{\hbar} is

$$\operatorname{spec}(\Delta_{\hbar}) = \left\{ \frac{1}{\hbar} \sum_{i=1}^{N} (2n_i + 1)\vartheta_i \, \middle| \, n_i \in \mathbb{N} \right\}.$$

Here the Hilbert space \mathcal{H}_{\hbar} is spanned by all sections corresponding to the smallest eigenvalue. The Berezin-Toeplitz quantization and dequantization maps follow the general idea (left column).

As physical Hilbert space $\mathcal{H}_{\hbar} \subset L^2(\mathcal{M}, \mathcal{L}_{\hbar})$, consider the span of the sections corresponding to the lower part of the spectrum.

The Berezin-Toeplitz quanitzation and dequantization

The projector $\Pi_{\hbar} : L^2(\mathcal{M}, \mathcal{L}_{\hbar}) \to \mathcal{H}_{\hbar}$ determines a quantization map

 $T_{\hbar}: \mathcal{A}_0 \to \mathcal{B}(\mathcal{H}_{\hbar}),$

such that $\forall \psi \in \mathcal{H}_{\hbar} : T_{\hbar}(f)\psi = \Pi_{\hbar}(f\psi).$

Assuming that Toeplitz operators of compactly supported functions $f \in C_c(\mathcal{M}, \mathbb{C})$ are of trace-class such that a measure μ_{\hbar} exists,

$$\operatorname{Tr}(T_{\hbar}(f)) = \int_{\mathcal{M}} f \,\mathrm{d}\mu_{\hbar}.$$

The (Berezin)-Toeplitz dequantization is a family of linear maps

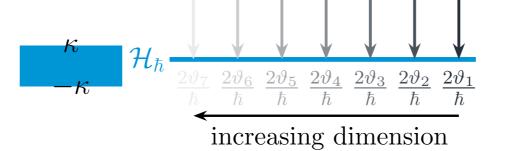
 $\Xi_{\hbar}:\mathfrak{A}_{\hbar}\to\mathfrak{A}_{0},$

such that for all operators $A \in \mathfrak{A}_{\hbar}$

$$\operatorname{Tr}(AT_{\hbar}(f)) = \int_{\mathcal{M}} \Xi_{\hbar}(A) f \,\mathrm{d}\mu_{\hbar}.$$

Relationship to strict deformation quantization

Under certain conditions, the quantized observables can be turned into sections Γ of a continuous field of C*-algebras $(I, (\mathfrak{A}_{\hbar})_{\hbar \in I}, \Gamma)$ over a range I of quantization parameters, including the classical limit at $\hbar = 0$ [2].



 $\frac{2\mu}{\hbar}$

The dequantization state

A linear functional $\sigma: \mathfrak{A}_{\hbar} \to \mathbb{C}$ is a state if and only if it is positive,

$$\forall A \in \mathfrak{A}_{\hbar} : \qquad \qquad \sigma(A^*A) \ge 0$$

and has unit norm. We showed that the linear map $\sigma_{\hbar} : \mathfrak{A}_{\hbar} \to \mathbb{C}$ given by

$$\sigma_{\hbar}(A) := \Xi_{\hbar}(A)(0)$$

is a state.

For a Weyl operator $W_{\hbar}(\phi)$ of any covector $\phi \in S^* = \operatorname{Hom}(S, \mathbb{R})$ the dequantization is

$$\sigma_{\hbar}(W_{\hbar}(\phi)) = \exp\left(-\frac{\hbar}{2}|\phi|^2\right)$$

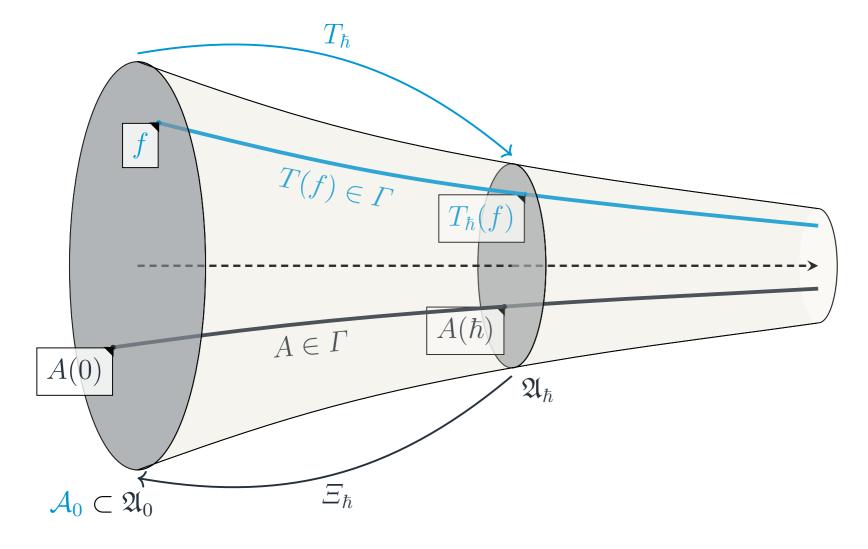
For any Toeplitz operator $T_{\hbar}(f) \in \mathfrak{A}_{\hbar}$, the Sorkin-Johnston state σ_{\hbar} is the Berezin transform

$$b_{\hbar}(z) := rac{1}{(2\pi\hbar)^N} \exp\left(-rac{1}{\hbar}|z|^2
ight).$$

of $f \in \mathcal{A}_0$ evaluated at 0,

$$\sigma_{\hbar}(T_{\hbar}(f)) = \int_{\mathcal{S}} b_{\hbar}(z) f(z) \operatorname{dvol}(z).$$

Equivalence with the Sorkin-Johnston state



Let $\mathcal{W}_{\hbar}(\mathcal{S}^*)$ be the Weyl algebra spanned by the Weyl generators $W_{\hbar}(\phi)$. The Sorkin-Johnston state $\sigma_{SJ} : \mathcal{W}_{\hbar}(\mathcal{S}^*) \to \mathbb{C}$ is the quasi-free (or Gaussian) state with a covariance given by the inverse of the symmetric, bi-linear form η ,

 $\forall v_1, v_2 \in \mathcal{S}: \qquad \qquad \eta(v_1, v_2) := \langle v_1, |E|^{-1} v_2 \rangle.$

The dequantization state is the same state.

Please find more details here. preprint 2207.05667

https://arxiv.org/abs/2207.05667

[1] X Ma, G Marinescu. *Mathematische Zeitschrift*, 240(3):651-664, 2002.
[2] J Dixmier. Les C*-algèbres et Leurs Représentations. 1964.

[3] J Henson. The Causal Set Approach to Quantum Gravity. 393, 2009.
 [4] E D-H, C J Fewster, K Rejzner, and N Woods. *Physical Review D*, 101(6):065013, 2020.

These are results of my PhD research at the University of York funded by ESPRC (grand number EP/N509802/1).

* E-mail: christoph.minz@itp.uni-leipzig.de