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The purpose of causal sets

Causal sets for quantum gravity (QG)
As a framework for QG, causal set theory (CST)
takes a minimalistic perspective, reducing the
spacetime manifold structure to:

a causal relation between elements, which is a
partially ordered set (poset), and
a volume scale, which is identified through
some fundamental lenth scale.

This is enough to recover the full structure of a
spacetime, see review [Surya 2019]. Additionally

causal sets are locally finite, and
spacetime manifolds are conjectured to be
continuous approximations to causal sets
[Bombelli-Lee-Meyer-Sorkin 1987].

Causal sets as discrete models
Discreteness ⇒ finite-dimensional analogoues of
classical and quantum field theory.

simpler to treat than the infinite-dimensional
spaces
but require a limit procedure to find
corresponding expressions that are valid for
the infinite-dimensional settings.
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Topics of this talk

1 Causal sets, classical fields and their discretisation

2 Quantum algebras and their relation to the classical theory

3 Geometric quantization and dequantization

4 Summary and generalizations to interacting field theory

Based on my PhD research with Eli Hawkins and Kasia Rejzner at the Department of Mathematics,
University of York.
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Causal sets from sprinkling

A sprinkle on a spacetime M

M = M2

U

Probability space
(
QU ,B(QU ), µU

)
QU,n := {S ⊂ U | |S| = n}

µU (Bn) = e−ρν(U) ρn

n! ν
n
(
Σ−1

U,n(Bn)
)

Math. review: [Fewster-Hawkins-Minz-Rejzner 2021].

Sprinkled causal set

drawn with the LATEX-package causets:
\pcauset{12, 7, 4, 11, 5, 14, 9, 2, 10, 13, 1, 6, 3, 8}

The Hasse diagram of a causal set C has
a vertex for every element
an edge between every pair of elements a < b
if ̸ ∃c ∈ C : a < c < b
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Causal sets

Definition (Causal set)
A causal set (causet) is a partially ordered set (S,⪯) that is locally
finite, i.e. the cardinality of the interval between any two elements
(events) x, y ∈ S,

[x, y] := {z ∈ S | x ⪯ z ⪯ y} ,

is finite.

Similarities with spacetime manifolds

causal structure is a partial order,
local compactness of a spacetime manifold ⇒ local finiteness of a
causet model of this manifold

A finite causet (3-simplex)
that embeds in

d-dimensional Minkowski
spacetime with d ≥ 1 + 3.
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Field configurations and classical observables

Definition (Scalar field configuration space)
For (a local region of) a causet C, the configuration space is given by all
functions E(C) := {φ : C → R}.
For a spacetime manifold M , the space of real scalar fields is the space
of smooth functions, E(M) := C∞(M,R).

Definition (Algebra of classical observables)
The algebra of classical observables on X = C or X = M is the space of
smooth, complex-valued functionals over the configuration space
F(X ) = C∞(

E(X ),C
)

with pointwise addition and multiplication.

(Off-shell) Poisson bracket [DableHeath-Fewster-Rejzner-Woods 2020]:

{f1, f2} (φ) = πoff

(
f ′

1(φ), f ′
2(φ)

)
.

For a finite causet C with
cardinality n, E(C) ∼= Rn,

write φ = (φ1, φ2, . . . , φn)T.
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Discretisation of the scalar field equations

Imposing field equations
To discretize the Klein-Gordon equations Pφ = 0, consider

(Pφ)(x) = c0φ(x) + c1
∑

z∈P1(x)

φ(z) + c2
∑

z∈P2(x)

φ(z) + . . .

where Pi(x) are subsets of events in the past of x.
Disadvantage of the layer method: the coefficients ci depend on the
spacetime, especially its dimension.
Alternative approach: a preferred past structure that assigns a unique
(rank 2) past element y to every element x, and (Pφ)(x) depends only
on the field values of [y, x] [DableHeath-Fewster-Rejzner-Woods 2020]. There are
ways to define a pref. past structure for a given causal set intrinsically,
[Fewster-Hawkins-Minz-Rejzner 2021, Minz 2022].
Open question about this alternative: Does it approximate the
continuum operator well?

In common discretization
methods, Pi(x) are past

layers L−
i (x)

[Dowker-Glaser 2013].
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The solution space

Green operators
The matrix of the field operator P is invertible.
So we define

retarded Green operator: E+ := P−1,

advanced Green operator: E− := (E+)∗ = (E+)T,

Pauli-Jordan operator: E := E+ − E−,

with respect to the standard inner product (metric).

The solution space
For spacetime manifolds: S = ker(P ) = img(E).
For causal sets: S = img(E) ⊃ ker(P ) = {0}.
With E, we get the Peierls bracket {f, g} = ∂f

∂xi
Eij ∂g

∂xj
[Peierls 1997]
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The quantum theory and its classical limit

Quantum-classical correspondence
A quantum theory has to be compatible with the
corresponding classical theory, meaning that it
should reproduce it in the limit ℏ → 0.
Let (Aℏ, •ℏ) be the algebra of the quantum theory
(at ℏ). A classical theory (A0, ·) corresponds to it
if the product turns into the commutative one and
the commutator turns into the Poisson bracket,

lim
ℏ→0

fℏ •ℏ gℏ = f · g,

lim
ℏ→0

1
iℏ

(
fℏ •ℏ gℏ − gℏ •ℏ fℏ

)
= {f, g} ,

where the observables may depend on ℏ as well,
limℏ→0 fℏ = f , limℏ→0 gℏ = g.

Definition (Quantization)
A quantization is a family of maps Qℏ : A0 → Aℏ
(for some *-subalgebra A0 ⊆ A0) such that
Qℏ(f)∗ = Qℏ(f) (and the unit is preserved).

Can we find quantization maps?
Yes, but:
By the Groenewald-van Hove no-go theorem
[1946, 1951], there is no quantization map such that

[Qℏ(f), Qℏ(g)]− = iℏQℏ
(
{f, g}

)
.

In general, there must be higher order correction
terms in ℏ on the right.
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Deformation quantization

Formal deformation quantization
Extend the classical Poisson algebra (P, {·, ·}) to
formal power series P[[ℏ]] ∋ f, g, h with a star
product

f ⋆ g =
∞∑

k=0
Bk(f, g)ℏk, with

(f ⋆ g) ⋆ h = f ⋆ (g ⋆ h),
B0(f, g) = f · g,

B1(f, g) −B1(g, f) = i {f, g} ,

(and perhaps some other properties).
Note that not all bilinear maps Bk are fixed, so
there is no unique star product.

Wick products
For some matrix W , and pointwise multiplication
m : f ⊗ g 7→ f · g:

f ⋆H g = m ◦ eℏW ij∂i⊗∂j (f ⊗ g),

W = i
2E +H,

where
Re(W ) = H

W is positive semi-definite, W ≥ 0
kerW ⊆ kerE

W has the meaning of a 2-point function.
On a spacetime, the Wick products fulfill the
equal-time commutation relations.
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Sorkin-Johnston construction

Wick products
For some matrix W , and pointwise multiplication
m : f ⊗ g 7→ f · g:

f ⋆H g = m ◦ eℏW ij∂i⊗∂j (f ⊗ g),

W = i
2E +H,

where
Re(W ) = H

W is positive semi-definite, W ≥ 0
kerW ⊆ kerE

W has the meaning of a 2-point function.
On a spacetime, the Wick products fulfill the
equal-time commutation relations.

Sorkin-Johnston 2-point function
[Johnston 2010, Sorkin 2011, 2017] used the axioms

commutator: WSJ −W SJ = iE,
positivity: WSJ ≥ 0,

purity: W SJWSJ = 0.

⇒ WSJ = i
2E +

√
−E2

For spacetimes, the state is not Hadamard
[Fewster-Verch 2012, 2013], but (non-unique)
modifications of the inner product make it
Hadamard [Brum-Fredenhagen 2014, Wingham 2019].
A similar construction can be done for
fermions [Finster 2005–2011, Fewster-Lang 2015].
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Weyl quantization and algebraic states

It is convinient to define quasifree states using the
Weyl generators.

Definition (Weyl quantization)
The Weyl algebra Wℏ over a real vector space S
with a Poisson bracket {·, ·} for the linear
observables in S∗ = Hom(S,R) is generated by
the image of the map Wℏ : S∗ → Wℏ such that

Wℏ(f)Wℏ(g) = e− iℏ
2 {f,g}Wℏ(f + g),

Wℏ(f)∗ = Wℏ(−f),
Wℏ(0) = 1.

The map Wℏ is a quantization.

Definition (Algebraic state)
A state is a linear functional σ : Aℏ → C that is
positive (∀A ∈ Aℏ : σ(A∗A) ≥ 0) and normalized.

Definition (Quasi-free state)
A state σ is called quasi-free (or Gaussian) if there
exists a symmetric, bi-linear form γ (the
covariance of the state) on S∗ such that

σ
(
Wℏ(f)

)
= exp

(
−ℏ

4γ(f, f)
)

holds for the Weyl generator Wℏ(f) of every
element f ∈ S∗.

For the SJ construction: γ−1(φ,φ) =
〈
φ, |E|−1φ

〉
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Quantization methods and dequantization

Quantization methods

Formal deformation quantization – via star
products (for causal sets, see
[DableHeath-Fewster-Rejzner-Woods 2020])
Strict deformation quantization – via a field
of C*-algebras
Weyl quantization
Geometric quantization

1 via a quantization line bundle
2 the Bochner Laplacian and
3 the Toeplitz quantization map

Even though, quantization is usually not invertible,
some quantizations admit a dual map.

Definition (Dequantization)
A dequantization Υ is a family of linear maps

Υℏ : Aℏ → A0,

that respects involution, Υℏ(A∗) = Υℏ(A), and if
there exists a unit 1 ∈ Aℏ, it is also unital,
Υℏ(1) = 1.

So, for a quantization Q and a dequantization Υ ,
Υℏ ◦Qℏ is usually not the identity map.

Idea: construct a state with a dequantization map.
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Structure for the construction

Structure for geometric quantization

a 2N -dimensional vector space S with
an inner product ⟨·, ·⟩ on S, and
a symplectic form ω as inverse of the
non-degenerate, on-shell Poisson bracket

such that

∀φ1, φ2 ∈ S : ω(φ1, φ2) =
〈
φ1, E

−1φ2
〉
,

(E is closely related to the Pauli-Jordan operator)

Definition (Quantization bundle)
Let (M, ω) be a real, symplectic manifold. A
quantization bundle is a Hermitian line bundle
Lℏ → M with connection ∇ℏ such that

curv(∇ℏ) = − i
ℏ
ω.

Physical Hilbert space = subbundle
A physical Hilbert space Hℏ is constructed from a
subbundle (polarized sections).
Consider the eigensections of the lowest spectral
part of the Bochner Laplacian

△ℏ := ∇∗
ℏ∇ℏ.
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The Bochner Laplacian

Hℏ
2ϑ1

ℏ
2ϑ2

ℏ
2ϑ3

ℏ
2ϑ4

ℏ
2ϑ5

ℏ
2ϑ6

ℏ
2ϑ7

ℏ
2ϑ8

ℏ
2ϑ9

ℏ

increasing dimension

spec(△ℏ) for a symplectic
vector space with
18 dimensions

Theorem (Spectrum of the Bochner Laplacian)
The spectrum of the Laplacian for the quantization bundle
Lℏ → S over (S, ω, ⟨·, ·⟩) is determined by a set of
strictly-positive numbers ϑi ∈ R such that

spec(△ℏ) =
{

1
ℏ

N∑
i=1

(2ni + 1)ϑi

∣∣∣∣∣ ni ∈ N

}
.

In the figure: spectrum for a 2N -dimensional space (with
N ∈ [1, 9]) and bounds in more general cases of some symplectic
manifolds [Ma-Marinescu 2002, 2008].

Physical Hilbert space Hℏ from sections of the lowest part of the
spectrum (here, a single eigenvalue)
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The Hilbert space and Toeplitz quantization

Coordinates for the finite-dim. vector space
(zi, z ı̄). The holomorphic sections

ψ(z) = α(z)
√

2πℏN
exp

(
− 1

2ℏ |z|2
)

with any holomorphic function α describe the
Hilbert space, using an orthonormal basis
|n1, . . . , nN ⟩.

a+
ı̄ := 1√

ℏ
δı̄iz

i −
√
ℏ∇ı̄,

a−
i := 1√

ℏ
δiı̄z

ı̄ +
√
ℏ∇i

act like ladder operators of an N -dimensional
harmonic oscillator.

Definition (Toeplitz quantization map)
Let A0 be the subspace of Schwarz functions in
the classical algebra and K(Hℏ) ⊆ B(Hℏ) be the
algebra of compact operators. The Toeplitz
quantization map

Tℏ : A0 → K(Hℏ)

is given by the projector Πℏ : L2(S,Lℏ) → Hℏ as

∀ψ ∈ Hℏ : Tℏ(f)ψ = Πℏ(fψ).

Toeplitz quantization extends to the bounded
operators B(Hℏ).
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Berezin-Toeplitz dequantization

Let µℏ be a measure such that for compactly
supported functions f ,

Tr
(
Tℏ(f)

)
=
ˆ

S
f dµℏ.

Definition
The Berezin-Toeplitz dequantization is a family of
linear maps Ξℏ : Aℏ → A0 such that for all
complex-valued, compactly supported functions
f ∈ Cc(S,C) and all operators Aℏ ∈ Aℏ

Tr
(
AℏTℏ(f)

)
= 1

(2πℏ)N

ˆ
S
Ξℏ(Aℏ)f dvol.

By construction, this map respects the involution,
Ξℏ(A∗) = Ξℏ(A), and is normalized.

Tℏ(f)

A(ℏ)

Tℏ

Ξℏ

T (f) ∈ Γ

A ∈ Γ

f

A(0)

A0 ⊂ A0

Aℏ

Christoph Minz From classical to quantum fields on causal sets DIAS, 9 May 2024 17 / 22



Classical fields on causal sets Quantum algebras Geometric quantization and dequantization Summary and generalization

Weyl generators in this representation

Lemma
For ϕ ∈ S∗ = Hom(S,R), denote the complex
components as ϕi ∈ C such that (in the
summation convention)

ϕ(z) = ϕiz
i + ϕı̄z

ı̄.

Let

Φℏ(ϕ) :=
√
ℏ δiı̄

(
ϕia

+
ı̄ + ϕı̄a

−
i

)
.

The functions Wℏ : S∗ → B(Hℏ) with

Wℏ(ϕ) := exp
(
iΦℏ(ϕ)

)
fulfill the Weyl relations.

Expansion of the square

Φℏ(ϕ)2 = ℏδiı̄δjȷ̄
(
ϕiϕja

+
ı̄ a

+
ȷ̄ + 2ϕı̄ϕja

−
i a

+
ȷ̄

+ ϕı̄ϕȷ̄a
−
i a

−
j

)
− ℏ|ϕ|21,

= ℏδiı̄δjȷ̄
(
ϕiϕja

+
ı̄ a

+
ȷ̄ + 2ϕiϕȷ̄a

+
ı̄ a

−
j

+ ϕı̄ϕȷ̄a
−
i a

−
j

)
+ ℏ|ϕ|21,

|ϕ|2 :=
N∑

i=1
|ϕi|2

the first is anti-normal ordered, compatible
with T -quantization
the second is normal ordered, compatible with
Ξ-dequantization
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Relation between Weyl and (Berein)-Toeplitz (de)quantization

The extra terms of all orders combine to an
exponential amplitude factor for quantization

Wℏ(ϕ) = exp
(
ℏ
2 |ϕ|2

)
Tℏ

(
eiϕ)

,

and dequantization

Ξℏ
(
Wℏ(ϕ)

)
= exp

(
−ℏ

2 |ϕ|2
)

eiϕ.

Definition (Weyl section)
The Weyl section of ϕ ∈ S∗ = Hom(S,R) is

W (ϕ) : ℏ 7→

{
eiϕ ℏ = 0,
Wℏ(ϕ) ℏ > 0.

In the classical limit ℏ → 0,
all expressions reduce to eiϕ.

Tℏ(f)

A(ℏ)

Tℏ

Ξℏ

T (f) ∈ Γ

A ∈ Γ

f

A(0)

A0 ⊂ A0

Aℏ
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Toeplitz operators of Schwartz functions

Classical Fourier transform
Recall that any Schwartz function f ∈ C∞

S (S,C)
has a Fourier transform

f̂(ϕ) = 1
(2π)2N

ˆ
S
f(z)e−iϕ(z) dvol(z),

and an inverse

f(z) =
ˆ

S∗
f̂(ϕ)eiϕ(z) dvol∗(ϕ).

“Quantum” Fourier transform
Let √

b̂ℏ(ϕ) = 1
(2π)N

exp
(

−ℏ
2 |ϕ|2

)
.

The Toeplitz operator of f is then

Tℏ(f) =
ˆ

S∗
f̂(ϕ)Tℏ

(
eiϕ)

dvol∗(ϕ)

= (2π)N

ˆ
S∗
f̂(ϕ)

√
b̂ℏ(ϕ)Wℏ(ϕ) dvol∗(ϕ).

For more relations between the Toeplitz and Weyl
quantization maps, see [Landsman 1998, ch. II].
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A state from dequantization

Theorem (Sorkin-Johnston state from
dequantization)
The linear map σℏ : Aℏ → C given by

σℏ(A) := Ξℏ(A)(0)

is the Sorkin-Johnston state.

Note that

σℏ
(
Wℏ(ϕ)

)
= exp

(
−ℏ

2 |ϕ|2
)
.

For any Toeplitz operator Tℏ(f) ∈ Aℏ (f ∈ A0):

σℏ
(
Tℏ(f)

)
= (Ξℏ ◦ Tℏ)(f)(0).

Berezin transform
The Berezin transform

(Ξℏ ◦ Tℏ)(f) = bℏ ⊛ f

is a convolution with the kernel

bℏ(z) := 1
(2πℏ)N

exp
(

− 1
ℏ

|z|2
)
.

So the state of a Toeplitz operator is a smearing
with the Berezin kernel

σℏ
(
Tℏ(f)

)
= 1

(2πℏ)N

ˆ
S

e− 1
ℏ |z|2

f(z) dvol(z).
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Summary of the construction
Construction of a quantum algebra and a distinguished state on

a real vector space S
with an inner product ⟨·, ·⟩
and a symplectic form ω such that ω(φ1, φ2) =

〈
φ1, E

−1φ2
〉
.

Generalization to interacting field theory

The coupling constant λ in an interacting theory is another deformation parameter, giving a
perturbation series in λ [DableHeath-Fewster-Rejzner-Woods 2020].
Then the phase space is no longer a symplectic vector space, but geometric quantization may still
be applicable.
Whenever geometric quantization works, this may give rise to a non-perturbative derivation of a
quantum algebra.

Thank you for your interest!
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Continuous field of C*-algebras

Continuous field of C*-algebras, after [Dixmier 1964, 1977]:
Let I be a topological space and let (Aℏ)ℏ∈I be a family of C*-algebras. A continuous field of
C*-algebras is a triple

(
I, (Aℏ)ℏ∈I , Γ

)
with vector fields Γ ⊆

∏
ℏ∈I Aℏ such that

1 Γ is a linear subspace of
∏

ℏ∈I Aℏ, closed under multiplication and involution,
2 for every ℏ ∈ I the set {A(ℏ) ∈ Aℏ|A ∈ Γ} is dense in Aℏ, and
3 for every element A ∈ Γ the norm function nA : I → R defined by

nA(ℏ) := ∥A(ℏ)∥

is continuous, nA ∈ C(I,R), as well as
4 if a vector field A′ ∈

∏
ℏ∈I Aℏ fulfills the condition that for all ℏ ∈ I and for all real constants

δ > 0 there exists a neighborhood Nℏ ⊂ I of ℏ such that

∃A ∈ Γ : ∀ℏ′ ∈ Nℏ : ∥A′(ℏ′) −A(ℏ′)∥ ≤ δ,

then A′ is also a section, A′ ∈ Γ .
The elements of Γ are called (continuous) sections of the field.
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